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Abstract
In this paper we perform a comparative study of the dynamical response of the
three hexagonal close-packed metals Sc, Y, and Ru for small- and medium-
sized wavevectors up to 50 eV. The calculations are based on ground states
which are determined using ab initio pseudopotentials together with a plane-
wave expansion of the wavefunctions. We consider many-body as well as
crystal local-field effects which both turn out to be small. In all of the three
elements we find a strong anisotropy of the response with respect to the direction
of the wavevector transfer. Furthermore, we obtain almost undamped plasmon
excitations for small wavevectors in the direction normal to the hexagonal planes
for the response of Sc and Y.

1. Introduction

The study of electronic correlations in solids is a central topic within condensed matter physics.
On the experimental side, spectroscopy has proven over time to be an extremely valuable tool in
analysing electronic structure. In addition to the different types of photoemission spectroscopy
and optical absorption experiments, electron energy-loss spectroscopy (EELS; see, e.g., [1])
and inelastic x-ray scattering experiments (see, e.g., [2]) have demonstrated their enormous
power.

Spectroscopic experiments are especially fruitful if the experimental results can be
compared to theoretical studies. In this way the various physical processes contributing to
the spectra observed in the experiments can be disentangled. It has been shown that for
many systems it is sufficient to consider electronic correlations within the random-phase
approximation or time-dependent density-functional theory. But it also turned out that it
is very important to consider the realistic band structure of the systems under consideration,
i.e., to perform so-called ab initio calculations. The importance of this point has been shown,
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e.g., for the presumably simple nearly-free-electron (NFE) metal Al [3] and Be [4] but also
for the alkali metal Cs [5] and the semiconductor Si [6].

Nowadays computers and modern ab initio pseudopotentials have made it possible to
extend such calculations to more complicated systems. Very recently, calculations of the
plasmonic excitations in Ag [7] and the response [8] and the optical absorption spectra [9] of
Cu have been presented. Only this year, a joint theoretical–experimental study of the EELS
spectra of rutile [10] was published.

In this article we present calculated response spectra for the hexagonal close-packed
(hcp) transition metals Sc, Y, and Ru. Transition metals have a high degree of technological
relevance, and understanding the electronic correlations and the interplay between electrons
and the ionic lattice is important, e.g., in the context of heterogeneous catalysis.

In the following section we give a brief summary of the underlying theory, i.e., the
calculation of the dynamical response and the ground-state calculations on which these
calculations are based. In section 3 we present and discuss our results.

2. Theory

The differential cross section for the scattering of electrons on a many-body target can be
calculated using standard first-order time-dependent perturbation theory. It is given as [11]

d2σ

d� dω
= m2

(2π)3

1

h̄5
v2

p

k′

k
S(p, ω). (1)

Here k and k′ are the absolute values of the wavevectors of the incident and the scattered
particle, respectively. p is the wavevector transferred from the incident electron to the system,
p = k − k′, and h̄ω is the transferred energy. vp are the Fourier coefficients of the Coulomb
potential, vp = 4πe2/p2. Note that the wavevector p is not restricted to the first Brillouin
zone (BZ).

Whereas the first part of the right-hand side of (1) contains all the information necessary for
describing the particular experiment, the second part, the dynamical structure factor S(p, ω),
is a ground-state property of the system under investigation. It thus represents the information
about the electronic structure of the target which is to be probed by the experiment. It can be
shown that S(p, ω) is proportional to the imaginary part of the generalized susceptibility or
retarded density-response function (up to a factor of h̄) [11]:

S(p, ω) = −2h̄V Im χG=G′(q, ω), (2)

where V is the volume of the system. Here we have already adopted crystal notation, using
p = q + G, with the wavevector q lying inside the BZ and G being a reciprocal-lattice vector.
Equation (2) is one way of expressing the fluctuation-dissipation theorem which relates the
dissipation of energy described by Im χG=G′(q, ω) to the electronic correlations within the
system.

The task of a theory describing electron scattering experiments is therefore the calculation
of the imaginary part of the retarded density-response function (in the following we suppress
the word ‘retarded’). Within many-body perturbation theory this can be done by solving the
Bethe–Salpeter equation (BSE). In the simplest non-trivial case this leads to an expression
for the density-response function within the so-called random-phase approximation (RPA).
Adopting again a notation suitable for crystalline systems, χG,G′(q, ω) is then given by the
following matrix equation [12]:

χG,G′(q, ω) = χ
(0)
G,G′(q, ω) +

∑
G1,G2

χ
(0)
G,G1

(q, ω)δG1,G2vq+G1χG2,G′(q, ω). (3)
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Here q and k denote wavevectors in the BZ, G and G′ are reciprocal-lattice vectors, and j , j ′

are band indices. vq+G = 4πe2/|q+G|2 is the Fourier transform of the bare Coulomb potential.
χ

(0)
G,G′(q, ω) is the density-response function for non-interacting electrons. In a notation suitable

for crystalline systems, it is given by [12–14]

χ
(0)
G,G′(q, ω) = 2

V

BZ∑
k

∑
j,j ′

fk,j − fk+q,j ′

h̄ω + εk,j − εk+q,j ′ + iη

× 〈k, j |e−i(q+G)·x̂|k + q, j ′〉〈k + q, j ′|ei(q+G′)·x̂|k, j〉. (4)

Here fk,j denote the occupation numbers, εk,j the eigenvalues, and 〈r|k, j〉 = ϕk,j (r) the
wavefunctions as obtained from a ground-state calculation within an independent-particle
model. Usually this is done by solving the Kohn–Sham (KS) equations [15–17]:(

− h̄2

2m
∇2 + veff(r)

)
ϕq,j (r) = εq,j . (5)

The KS equations map a system of interacting electrons onto a system of formally non-
interacting (so-called KS) electrons. These electrons move in a mean-field potential which
is set up by the ionic potential vion(r) and another term which considers the electron–
electron interaction. The latter is typically split into the classical Coulomb potential of a
charge distribution, vCoul(r) = ∫

d3r ′ n(r′)/|r − r′|, and a second part, vxc, in which the
purely quantum-mechanical exchange–correlation contributions are considered. The effective
potential is thus given as

veff(r) = vion(r) + vCoul(r) + vxc(r). (6)

We calculate vxc(r) within the local-density approximation (LDA) [16, 17] using the
parametrization of the data of Ceperley and Alder [18] as obtained by Perdew and Zunger [19].

Within many-body perturbation theory it is a very tedious task to go beyond the RPA in the
calculation of the density-response function. However, this can be avoided in systems in which
excitonic excitations are not present. So it is perfectly sufficient in metallic systems to use
the time-dependent local-density approximation (TDLDA), an extension of the LDA into the
time-dependent regime. This was first done on empirical grounds by Zangwill and Soven [20]
and has later been put on a solid theoretical footing by Gross and co-workers [21–23]. Within
the TDLDA the density-response function is given by an extension of (3):

χG,G′(q, ω) = χ
(0)
G,G′(q, ω) +

∑
G1,G2

χ
(0)
G,G1

(q, ω)[δG1,G2vG1(q) + f xc(G1 − G2)]χG2,G′(q, ω).

(7)

f xc(G) represents vertex corrections. Within the TDLDA, f xc depends only on the reciprocal-
lattice vector, not on the wavevector, and is given by f xc(G) = ∫

d3r e−iG·r [dvxc(r)/dn(r)].
Here vxc(r) is the exchange–correlation potential used in the KS equations (5). Considering
vertex corrections is also referred to as taking into account many-body local-field effects.
Setting f xc(G) = 0 recovers the RPA.

3. Results and discussion

The starting point of our calculations is a set of well-converged ground-state calculations
which were done using the pseudopotential plane-wave code fhi96md [24] in connection with
norm-conserving Troullier–Martins pseudopotentials [25,26]. In table 1 we give some details
of these calculations. In order to make sure that the pseudopotential calculations describe
the ground state reliably, we also performed all-electron calculations using the full-potential
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Table 1. Some characteristics of the three hcp metals considered in this paper. a0 is the lattice
constant (in Bohr) and c/a0 the ratio of the lattice constant in the z-direction toa0. The fourth column
shows the electronic configuration of the atom used in the construction of the pseudopotential. In
the fifth and sixth columns we give the number of wavevectors used to sample the BZ and the cut-off
used in the expansion of the wavefunctions, respectively. The last column displays the calculated
occupied bandwidth.

Element a0 (Bohr) c/a0 Atomic No of Cut-off Occupied bandwidth
configuration k-points (Ryd) (eV)

Sc 6.255 1.594 [Ar]3d14s2 500 35 5.20
Y 6.898 1.571 [Kr]4d15s2 600 20 4.73
Ru 5.1 1.584 [Kr]4d75s1 500 40 8.36

linearized augmented-plane-wave (FPLAPW) code WIEN95 [27]. The results obtained with
these two approaches agree perfectly for the valence bands and the low-lying conduction bands.
As usual, there are differences for the high-lying conduction bands which we attribute to errors
due to the linearization done in the LAPW formalism [28].

The pseudopotential calculations of the ground state, on which the following determination
of the dynamical response is based, have been done considering only the nd and (n + 1)s
electrons as valence electrons, where n = 3, 4. The corresponding ns and np electrons have
been assigned to the core and are considered via the pseudopotential. In other words, we do
not consider explicitly the semicore states. This approach is perfectly sufficient as long as
ground-state properties are considered and it is also sufficient for the calculation of the low-
and intermediate-energy region of the dynamical response [7, 8].

Having obtained a reliable ground state, the major task is the calculation of the
independent-particle density-response function from (4). In the calculation of χ

(0)
G,G′(q, ω)

we used 100 bands in order to ensure convergence of the sum with respect to the number of
bands in the energy region considered. For η we chose 0.2 eV, which is small enough for us to
avoid an artificial broadening of the resulting spectra but large enough for us to obtain stable
results using a reasonable sampling of the BZ. In the cases of Sc and Y the BZ was sampled
by a 10 × 10 × 5 mesh; in the case of Ru we used 10 × 10 × 6 wavevectors for the sampling.

For each of the three elements under consideration we calculated the dynamical response
for four small- and medium-sized wavevectors. For each wavevector the response was
determined within the RPA and the TDLDA. For all elements we found that including the
vertex corrections as considered within the TDLDA leads only to minor changes in the results.
Although this is a different behaviour to that found for simple metals like Al [3], in which
including these vertex corrections leads to small but important changes in the spectra, our results
are in accordance with results obtained recently for rutile [10]. Furthermore, we considered
up to four shells of reciprocal wavevectors in equations (3) and (7), i.e., we took crystal
local-field effects into account. In table 2 we give an overview over the shell structure of the
reciprocal-lattice vectors of hcp lattices for the first four shells.

In figure 1 we summarize our results for the imaginary part of the density-response
function of Sc for the four wavevectors q = (0, 0, 0.2), q = (0, 0, 0.4), q = (0.1, 0.1, 0), and
q = (0.3, 0.3, 0), given in units of 2π/ai (see the caption of table 2). All results displayed
were obtained within the TDLDA and considering four shells of reciprocal-lattice vectors. As
already mentioned, for Sc the inclusion of many-body or crystal local-field effects does not
lead to significant changes of Im χG,G′(q, ω).

Comparing the two plots on the left-hand side of figure 1 with those on the right-hand
side shows a remarkable qualitative difference. For a small wavevector transfers q along the
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Table 2. The shell structure of the reciprocal-lattice vectors G for hcp lattices. The G are given in
cartesian coordinates in units of 2π/ai , with a1 = √

3 a0, a2 = a0, and a3 = c. As usual, c is the
lattice constant in the z-direction.

Shell Gx Gy Gz Number Total

Scalar 0 0 0 1 1
1 0 0 ±1 2 3
2 ±1 ±1 0 4

±2 0 0 2 9
3 0 0 ±2 2 11
4 ±1 ±1 ±1 8

±2 0 ±1 4 24

z-direction, Im χG,G′(q, ω) displays only a single, though broad peak around 13 eV with some
additional structure at lower energies. For comparison we also calculated the response within
the jellium model for a Wigner–Seitz radius of rs = 2.38 which corresponds to the average
electronic density of the valence electrons of Sc, n = 0.0178 Bohr−3, and used a wavevector
of the same length. The peak position of the jellium response is almost at the same position
as the one obtained for Sc. However, the widths of the two structures are drastically different.
Whereas the width of the jellium response is solely due to the numerical value of η = 0.2 eV,
the width of the Sc response is much wider, a result of one-electron interband transitions which
are not possible in the homogeneous electron gas. We checked this by calculating the response
using values for η of 0.1, 0.2, and 0.4 eV. In each case the width of the peak was the same.
Note that the Fermi energy for a homogeneous electron gas with rs = 2.38 is much larger
(8.85 eV) than the Fermi energy for Sc. However, the Wigner–Seitz radius which corresponds
to EF = 5.2 eV is 3.10, being much larger than 2.38. The corresponding plasma frequency
would therefore be at much lower energies. One has to keep in mind, however, that when
comparing ab initio results with results obtained within the jellium model one always has the
problem of deciding which parameter should be fixed, the average electronic density, the Fermi
energy, etc. For non-NFE metals in particular, each choice leads to different results.

We also calculated the response for a larger wavevector transfer in the z-direction. In
this case the peak becomes even wider and there is more structure at lower energies. Also
the agreement with the corresponding jellium calculation is less good than in the first case.
But, nevertheless, the basic structure of Im χG,G′(q, ω) in this case is still a rather well-defined
peak.

The situation changes drastically if the response is calculated for wavevectors within
the hexagonal plane (z = 0). The plot in the upper right of figure 1 shows Im χG,G′(q, ω)

for a wavevector whose magnitude is even slightly smaller than the one considered for the
plot shown in the upper left part of figure 1. The imaginary part of the response function
for q = (0.1, 0.1, 0) shows two distinct peaks around 20 eV within an otherwise broad
structureless behaviour known from systems with d bands [7, 8]. This applies also to the
last plot shown in figure 1 for q = (0.3, 0.3, 0) although here the structure between 10 and
20 eV is more pronounced. This means that for these wavevectors the calculated spectra of Sc
show a behaviour which is typical for transition metals, contrary to the jellium-like structure
of Im χG,G′(q, ω) for wavevectors in the z-direction.

The plots displayed in figure 1 raise two questions. First, are the excitations which occur
for wavevector transfers perpendicular to the hexagonal planes really plasmon excitations as
suggested by the comparison with the jellium results? And second, has Sc, in this direction,
really got jellium-like properties?
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Figure 1. The imaginary part of the density-response function for Sc (solid curves) calculated
for four small- and medium-sized wavevectors. All calculations were done using TDLDA and
including four shells of G-vectors. Here, as throughout the text, wavevectors are given in units of
2π/ai (see the caption of table 2). In all cases G = G′ = 0. The dashed curves denote the result
of a jellium calculation using rs = 2.38 which corresponds to the average electronic density of Sc.
Note that in this plot and in figure 3 the unit of the jellium result is 10−2 eV−1 Å−3.

The first question is most easily answered by inspection of the dielectric function,
εG=G′=0(q, ω), for G = G′ = 0 as displayed in the top left corner of figure 2 for the wavevector
q = (0, 0, 0.2). The plot shows clearly that the real part (solid curve) has a zero around 13 eV,
exactly at the energetic position at which the excitation occurs. A more detailed view of the
region of interest is given in the inset. For these energies the imaginary part of εG=G′=0(q, ω)—
which is proportional to the imaginary part of χ

(0)
G,G′(q, ω)—has almost dropped to zero. This

indicates that the peaks in the response of Sc for wavevectors in the z-direction are indeed due
to plasmon excitations.

An answer to the second question is provided by a plot of the imaginary part of the density-
response function for non-interacting particles, χ

(0)
G,G′(q, ω), as shown by the solid curve in

the lower left plot of figure 2. The deviation of this curve and the corresponding curve for
the homogeneous electron gas for the same wavevector (dashed curve) is obvious and this
clearly shows that Sc is definitely not a jellium-like metal. The plasmon in Sc originates from
more general grounds; because the imaginary and real parts of the density-response function
are related by the Kramers–Kronig relation the fast decay of Im χ

(0)
G,G′(q, ω) leads to the fact

that the real part has reached its asymptotic region—in which it decays as ω−2—already at
around 10 eV, lying on top of the jellium result. This is shown in the inset of the lower left
plot of figure 2.

For wave transfers parallel to the hexagonal plane the situation is completely different.
The solid curve in the lower right plot of figure 2 denotes Im χ

(0)
G,G′(q, ω) for q = (0.1, 0.1, 0).

One clearly notices a slower decay which is interrupted by additional peaks which represent
transitions to higher-lying bands. The peak structure between 5 and 10 eV, e.g., is caused
by transitions from the valence bands to the three bands marked by the thick solid curves in
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Figure 2. Plots to illuminate the behaviour of Sc as shown in figure 1. The plot in the upper left
corner shows the real (solid curve) and imaginary (dashed curve) parts of the dielectric function.
The plot below displays the imaginary part of the density-response function for Sc (solid curve)
and the homogeneous electron gas (dashed curve). In the inset the real part is shown. In order to
avoid misunderstandings, we stress that here the results for Sc and the homogeneous electron gas
are in the same units. The plot in the upper right corner is the band structure of Sc and the one in
the lower right corner is again Im χG,G′ (q, ω). In all plots G = G′ = 0. For further explanations
see the main text.

Figure 3. As figure 1, but for Y. Up to details, the displayed density-response functions for Y
resemble very much these of Sc. The Wigner–Seitz radius used for Y is rs = 2.61.

the band structure of Sc shown in the upper right plot of figure 2. This can be visualized by
excluding these bands in the summation of (4) which leads to the dashed curve. From this
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Figure 4. As figure 1, but for Ru. Whereas the spectra for q = (0, 0, z) are markedly different
from those for Sc and Y, the response for wavevectors which are within the hexagonal planes is
similar.

we conclude that transitions to higher excited bands are completely missing in the density-
response function for independent particles for wavevectors perpendicular to the z-direction.
This in turn leads to the plasmon excitations observed in the left panel of figure 1.

Figure 3 shows the calculated density-response functions for Y for four wavevectors with
the same relative coordinates as in the case of Sc. The plots are very similar to the ones of Sc.
Again, Im χG,G′(q, ω) for wavevectors in the z-direction reveals a clear plasmon excitation,
although the peak positions of the density-response functions of Y are more shifted towards
higher energies with respect to the corresponding jellium curves than was the case for Sc.

In figure 4 we show density-response functions for four different wavevectors for Ru.
Again there is a manifest difference between the results for wavevectors in the z-direction and
those perpendicular to this direction. However, the Im χG,G′(q, ω)plotted for q = (0, 0, 0.167)

and q = (0, 0, 0.5) display much more structure than just a single peak. In both curves there
is a distinct local maximum around 11 eV. This peak coincides with a zero of the real part
of the dielectric function, i.e., the peak resembles a plasmon excitation which is damped by
single-particle transitions, represented by a non-vanishing imaginary part of εG=G′=0(q, ω).
In addition, there is a structure of several peaks around 30 eV. The curves for q = (0.1, 0.1, 0)

and q = (0.3, 0.3, 0) show an overall shape which is similar to the ones for Sc and Y.

4. Conclusions

We have calculated the density-response function for the three hcp metals Sc, Y, and Ru for
small- and medium-sized wavevectors. For all three elements we find a strong anisotropy for
wavevector transfers parallel to the z-direction and wavevectors within the hexagonal plane.
Even more amazing are the results for Sc and Y, where the imaginary parts of the density-
response functions for wavevectors in the z-direction clearly reveal plasmon excitations. For
directions parallel to the hexagonal plane the density-response function for all three elements
resembles the structure known from noble metals. In all three metals many-body and crystal
local-field effects can almost be neglected.
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